Novel dimeric DOTA-coupled peptidic Y1-receptor antagonists for targeting of neuropeptide Y receptor-expressing cancers
نویسندگان
چکیده
BACKGROUND Several peptide hormone receptors were identified that are specifically over-expressed on the cell surface of certain human tumors. For example, high incidence and density of the Y1 subtype of neuropeptide Y (NPY) receptors are found in breast tumors. Recently, we demonstrated that the use of potent radiolabeled somatostatin or bombesin receptor antagonists considerably improved the sensitivity of in vivo imaging when compared to agonists. We report here on the first DOTA-coupled peptidic Y1 receptor affine dimer antagonists. METHODS Based on a Y1 affine dimeric peptide scaffold previously reported to competitively antagonize NPY-mediated processes, we have developed new dimeric DOTA-coupled Y1 receptor affine antagonists for scintigraphy and radiotherapy. These dimeric peptides were tested for their specific binding to Y1 expressed in SK-N-MC cells and Y2 expressed in SH-SY5Y as well as for their ability to mediate cAMP production in SK-N-MC cells. RESULTS Introduction of two DOTA moieties at the N-termini of the dimeric NPY analogs as well as the double Asn29 replacement by Dpr(DOTA) or Lys(DOTA) (6 and 10) moiety dramatically reduced binding affinity. However, asymmetric introduction of the DOTA moiety in one segment of the peptidic heterodimer (8 and 11) resulted in suitable antagonists for receptor targeting with high binding affinity for Y1. All compounds were devoid of Y2 binding affinity. CONCLUSIONS The design and the in vitro characterization of the first DOTA-coupled dimeric NPY receptor antagonist with high affinity and selectivity for Y1 over Y2 are described. This compound may be an excellent candidate for the imaging of Y1-positive tumors and their treatment.
منابع مشابه
Synthesis, labeling and quality control of a new Neuropeptide Y analogue for diagnosis of breast tumors
Introduction: Over expression of selected peptide receptors in human tumors has been shown to represent clinically relevant targets for cancer diagnosis and therapy. The aim of this work was to investigate Neuropeptide Y (NPY) as a new radiopharmaceutical for diagnosis of breast cancer. Methods: A neuropeptide Y analogues with Y1 receptor preference and agonistic p...
متن کاملA G protein-coupled receptor dimer imaging assay reveals selectively modified pharmacology of neuropeptide Y Y1/Y5 receptor heterodimers.
The ability of G protein-coupled receptors (GPCRs) to form dimers, and particularly heterodimers, offers potential for targeted therapeutics with improved selectivity. However, studying dimer pharmacology is challenging, because of signaling cross-talk or because dimerization may often be transient in nature. Here we develop a system to isolate the pharmacology of precisely defined GPCR dimers,...
متن کاملModeling the G-protein-coupled neuropeptide Y Y1 receptor agonist and antagonist binding sites.
Neuropeptide Y (NPY) receptors belong to the G-protein-coupled receptor (GPCR) superfamily and mediate several physiological responses, such as blood pressure, food intake, sedation and memory retention. To understand the interactions between the NPY Y1 receptor subtype and its ligands, computer modeling was applied to the natural peptide agonist, NPY and a small molecule antagonist, BIBP3226. ...
متن کاملPreparation and evaluation of 67Ga-DOTA-Bombesin (7-14) as a tumor scintigraphic agent
Introduction: Bombesin is a 14-aminoacid peptide isolated from frog skin. The mammalian counterparts of the frog peptide are neuromedin B (NMB) and gastrin-releasing peptide (GRP). Bombesin (BBN) is a peptide showing high affinity for the gastrin releasing peptide receptor (GRPr). Prostate, small cell lung cancer, breast, gastric, and colon cancers are known to over...
متن کاملA G Protein–Coupled Receptor Dimer Imaging Assay Reveals Selectively Modified Pharmacology of Neuropeptide Y Y1/Y5 Receptor Heterodimers s
The ability of G protein–coupled receptors (GPCRs) to form dimers, and particularly heterodimers, offers potential for targeted therapeutics with improved selectivity. However, studying dimer pharmacology is challenging, because of signaling cross-talk or because dimerization may often be transient in nature. Here we develop a system to isolate the pharmacology of precisely defined GPCR dimers,...
متن کامل